Step of Proof: can-apply-compose'
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
can-apply-compose'
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
A
B
C
),
x
:
A
. can-apply(
f
o'
g
;
x
) ~ can-apply(
g
;
x
)
latex
by ((((UnivCD)
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((RepUR ``do-apply can-apply p-compose\'
CC
`` ( 0)
)
C
CollapseTHEN (((((GenConclAtAddr [1;1;1;1])
CollapseTHENA (Auto
))
)
C
CollapseTHEN (
CC
((D (-2)
)
C
CollapseTHEN (((Reduce 0)
C
CollapseTHEN (Auto
))
))
))
))
))
latex
CC
.
Definitions
s
~
t
,
f
o'
g
,
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
P
Q
,
f
(
a
)
,
Type
,
Top
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
s
=
t
,
left
+
right
Lemmas
top
wf
origin